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Abstract

A potentiometric electronic tongue (ET) consisting of eight cross-sensitive chemical sensors and a standard pH electrode has been applied
for analysis of simulated fermentation solutions typical for fermentation processes withAspergillus niger. The electronic tongue has been
found capable of simultaneous determination of ammonium, citrate and oxalate in complex media with good precision (typical error within
8%). The system preserved high sensitivity to the targeted substances also in the presence of sodium azide, which is commonly used for
suppressing microbial activity in real-world fermentation samples. Sensor performance was fast and reproducible which promises well for
routine application of the electronic tongue for fermentation process monitoring.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Different kinds of fermentations are widely used in in-
dustrial scale in production of food, beverages, enzymes, or-
ganic acids, pharmaceuticals, biogas, etc. Various types of
living organisms are utilized for fermentation processes with
filamentous fungi or moulds of special importance. These
organisms are widespread in nature, and some species of
filamentous fungi have been used for thousands of years to
give taste and durability to the food products, e.g. for pro-
duction of Asian fermented foods, such as soy sauce and
sake, and various mould cheeses.

Filamentous fungi are interesting for the biotechnological
industry due to their special properties such as a complex
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life cycle, cell differentiation, and an efficient system for se-
cretion of proteins. Nowadays filamentous fungi are widely
used in biotechnological production of enzymes, organic
acids and pharmaceuticals. Some of the most commonly
used species areAspergillus niger for production of citric
acid [1], Aspergillus oryzae for production of heterologous
�-amylases[2] and Penicillium Chrysogenum for produc-
tion of penicillin [3].

Continuous monitoring of biotechnological processes is
urgently needed for improving efficient management and
optimization as well as for quality control with the aim of
high quality final products. However, despite the current
rapid development of the biotechnology industry, cost ef-
fective, real-time and convenient process monitoring means
are still lacking. Currently used analytical equipment, such
as HPLC, GC, IR, or UV instruments, is expensive. Anal-
yses by these methods are often time-consuming, demand
experienced operators and, as a rule, do not provide a com-
prehensive picture of a process.
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Of the promising analytical tools for such applications are
the ‘electronic tongue’ multisensor systems (ET). The idea
of the electronic tongue is based on utilization ofarrays of
cross-sensitive chemical sensors, particularly potentiomet-
ric, combined with multivariate data analysis. This approach
gives an opportunity of performing simultaneous quantita-
tive determination of various substances in multi-component
media as well as of detailed monitoring (follow-up) of indus-
trial processes. The key advantages of the electronic tongue
are rapid and relatively simple operation, low cost, and an
option of simultaneous determination of several components
and/or parameters of the media. An electronic tongue system
based on potentiometric chemical sensors already proved to
be useful in numerous applications including food analysis
[4] and monitoring of fermentation processes, namely model
batch fermentation ofE. coli [5] and fermentation of cheese
starter culture[6].

In the present work, an electronic tongue based on poten-
tiometric cross-sensitive sensors was applied for the analysis
of model growth media closely resembling real-world fer-
mentation samples. Measurements were made in solutions
modeling the composition of media whereA. niger are typi-
cally grown. Primary attention was paid to determination of
the content of ammonium and organic acids in the media.
During fungi growth, different changes of medium content
and concentrations of nutrients take place. Fungi consume
ammonium and glucose and produce organic acids, e.g. cit-
rate, oxalate, and other substances such as polyols. Monitor-
ing of the presence and changing content of key compounds
may be important in practice for identifying the current state
of the fermentation, realistic yields, and specific growth
rates, and will also be useful for correct determination of
optimal harvest times. The present study is a step forward
to applying the electronic tongue multisensor system for
monitoring of industrial biotechnological processes.

2. Experimental

The ET sensor array in this experiment comprised eight
potentiometric chemical sensors based on PVC-plasticized
membranes with enhanced cross-sensitivity, particularly
to inorganic cations and anions of organic acids. Details
of the sensors’ compositions and preparation were pub-
lished elsewhere[7–11]. A set of cationic sensors based
on different cation-exchangers was employed. Standard
ammonium-selective electrode based on nonactine (e.g.
[15] and references therein) was used throughout the exper-
iments for comparison. Several sensors based on different
quaternary ammonium salts[10] exhibiting sensitivity to
various anions and also to organic acids’ anions were in-
cluded into the sensor array. A standard pH glass electrode
was constantly used in all measurements to control the pH in
the solutions. Sensors were washed with distilled water be-
tween measurements until they reached steady potential that
was constant within 10 mV for each sensor. Potentiometric

measurements with the sensor array were performed with
a custom-made multi-channel digital voltmeter with high
input impedance connected to a PC for data acquisition.
Responses of sensors of the array were measured versus a
Ag/AgCl reference electrode with double liquid junction.

The compositions of the model solutions closely matched
averaged results of independent analysis of broths from real
batch fermentations ofA. niger in a minimal medium. Broths
were sampled and analyzed during fungi growth from inocu-
lation to stationary phase (approximately 22 h) and analyzed
by standard analytical methods such as ion chromatography,
HPLC, etc. Then, these data were used for preparation of
the set of currentmodel solutions with very similar content
for all components. The component concentrations are listed
in the Table 1. The chemicals used for solutions prepara-
tion were of analytical grade. All simulated solutions con-
tained a background of 0.5 g l−1 KCl, 1.5 g l−1 KH2PO4,
0.5 g l−1 MgSO4 and 1 ml of Vishniac trace element solu-
tion [12] that contains trace elements such as copper, zinc,
manganese, etc. that are essential for the microorganisms’
growth. It is routinely added to the growth media in different
biotechnological processes. Solutions also contained vary-
ing quantities of ammonium ions and glucose, which are
considered as feed for fungi, and citric, oxalic and pyruvic
acids. Furthermore, the solutions contained glycerol, man-
nitol and erythriol which are typical metabolites produced
by fungi during their growth. pH of all the solutions was
adjusted to 6 by the addition of NaOH.

Three experimental sessions were carried out. In the first
session, which served as a feasibility study, 22 model solu-
tions were prepared containing all components except pyru-
vate, mannitol and erythritol. The solutions of the second
session contained all substances listed inTable 1. In the third
experimental session even more complicated samples were
prepared. They again contained all components (Table 1) and
also 10 mM ofsodium azide, which is commonly used for
stopping microbial activity in growth media after sampling.
Sodium azide was added to all solutions to verify its interfer-
ence on the results produced by the electronic tongue. Three
replica measurements in each solution within each experi-
mental session were made. All samples were stored in the
laboratory refrigerator between measurements and warmed
up to room temperature just before analysis.

The electronic tongue was calibrated with respect to am-
monium, oxalate and citrate prior to measurements in model
growth media. This was done in order to evaluate the sen-
sitivity of ET to each of these substances in the presence
of typical ionic and organic background. Calibration mea-
surements were made in the concentration range from 0.01
to 100 mM for each substance on the background of min-
imal medium solution (2 mM MgSO4, 7 mM KCl, 11 mM
KH2PO4) and also 30 mM of glucose. pH of all calibration
solutions was adjusted to 6.

Data processing consisted ofmultivariate calibration
with respect to organic acids and ammonium concentra-
tions using the sensors responses (potential values versus
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Table 1
Full set of solutions simulating growth media of real fermentation processes involvingA. niger

Sample no. Time Citrate
(mM)

Pyruvate
(mM)

Oxalate
(mM)

Glucose
(mM)

Glycerol
(mM)

Mannitol
(mM)

Erythritol
(mM)

NH4Cl
(mM)

1 0 0 0 0 45.3 0.14 0.05 0 14.0
2 1.8 0 0 0 45.3 0.17 0.07 0 14.0
3 5.3 0 0 0 44.0 0.24 0.05 0 13.6
4 7.9 0.5 0 0 42.7 0.35 0.05 0.02 13.2
5 10.5 1.4 0 2.6 41.4 0.41 0.05 0.03 12.8
6 11.6 1.7 0 7.8 38.9 0.52 0.03 0.05 12.0
7 12.6 2.2 0 10.4 36.3 0.59 0.03 0.07 11.2
8 13.7 2.6 0 13.0 33.7 0.69 0.03 0.10 10.4
9 14.7 3.3 0 18.1 29.8 0.76 0.05 0.14 9.2

10 15.3 3.6 0 20.7 27.2 0.86 0.05 0.16 8.4
11 15.8 3.8 0 23.3 25.9 0.93 0.07 0.19 8.0
12 16.3 4.0 0 25.9 23.3 1.04 0.09 0.24 7.2
13 16.8 3.8 0 28.5 20.7 1.10 0.10 0.26 6.4
14 17.1 3.8 0 28.5 19.4 1.17 0.10 0.28 6.0
15 17.4 3.8 0 31.1 18.1 1.28 0.12 0.29 5.6
16 17.9 3.8 0 33.7 15.5 1.38 0.13 0.31 4.8
17 18.4 4.0 0 38.9 13.0 1.48 0.17 0.40 4.0
18 18.9 4.3 0 44.0 9.1 1.59 0.21 0.45 2.8
19 19.5 4.7 0.3 46.6 6.5 1.66 0.22 0.47 2.0
20 20 5.0 1.6 49.2 5.2 1.73 0.28 0.52 1.6
21 20.5 5.3 2.6 59.6 1.3 1.90 0.40 0.60 0.4
22 21.1 5.5 2.4 62.2 0 1.90 0.47 0.62 0

The time column shows real time, corresponding to sampling points of real growth media, which composition was simulated in this work.

reference electrode). Two methods were employed for
this purpose: Partial Least Squares (PLS) regression and
Back-Propagation Artificial Neural Network (ANN). ANN
with six input, two hidden and one output neurons was used
for the ammonium determination. ANNs with eight input,
two hidden and one output neurons were used for citrate
and oxalate determination and growth time prediction. A
hyperbolic tangent transfer function was used in all cases.
Sensor responses were used directly as input data to ANN.
Calibration models were made separately for each compo-
nent. All calibration models were validated using indepen-
dent test set validation[13]. All data were centred before
modelling (both in PLS and ANN). Data were also scaled
to lay in the [−1, 1] interval before ANN calculations.

The experimental data sets were separated into calibration
and test sets (and also monitoring set in the case of ANN)
in two different ways. For ANN, the first and second replica
measurements in each of three experiments were randomly
divided into calibration and monitoring data sets. For PLS
regression, the first and second replicas were used for cali-
bration, while the third measurement data were used as the
independent test set for both ANN and PLS. In the frame-
work of the second approach, all replicas of seven randomly
selected samples were collected as the test set, while all
other data were used for calibration (for PLS) or split ran-
domly into calibration and monitoring data sets (for ANN
training). The results obtained for the two test data sets were
very similar.

The commercial software Unscrambler v. 7.8 by CAMO
and NeuroSolutions by NeuroDimensions Inc. was used for
PLS regression and ANN modeling, respectively.

3. Results and discussion

Initially, the sensitivity and selectivity of ET to ammo-
nium and organic acids was evaluated in the presence of
typical background inorganic compounds for chosen type
of fermentation. The method of evaluation of detection lim-
its and selectivity for the sensor arrays was suggested and
described in[14]. Also, a comparison of selectivity of the
sensor array with that of discrete sensors was performed.
For this purpose calibrations of the sensor array with re-
spect to ammonium, oxalate and citrate were made. The
“minimal medium” containing inorganic salts and 30 mM
of glucose with pH adjusted to 6 was used as background. It
was observed earlier[10] that sensors based on quaternary
ammonium salts display sensitivity to both oxalic and citric
acids with detection limit of 5�M. On the minimal medium
background detection limit of these sensors increased up to
0.1 mM towards oxalic and to 0.25 mM towards citric acids.
This is likely due to the interference of chloride, which is
present in the minimal medium in concentration of 7 mM.
Detection limit of the sensor array on the minimal medium
background was found being 0.08 mM for oxalate and
0.12 mM for citrate. Detection limit of discrete sensors based
on quaternary ammonium salts in the minimal medium are
low enough to enable determination of oxalate and citrate.
It must be noted that all studied anion-sensitive sensors
respond to both organic acids with comparable selectivity
and, hence, will produce mixed response in solutions con-
taining these two acids simultaneously. Thus, they cannot
be used for detection of these acids as discrete sensors. Nev-
ertheless, being incorporated into the array, these sensors
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can be used successfully for simultaneous organic acids’
determination.

The detection limit of both sensor array and discrete
ammonium-selective sensor to ammonium in water was
estimated to be lower than 10�M. The situation in sim-
ulated fermentation media was very different—the detec-
tion limit of the sensor array to ammonium was found
being 0.2 mM whilst it increased to 0.8 mM for discrete
ammonium-selective electrodes. The observed ammonium
detection limit increase might be related to noticeable in-
terference of potassium, which was present in the minimal
medium at the concentration level of 18 mM. According
to the literature data[15], logarithm of a selectivity coef-
ficient of the ammonium-selective electrode to potassium
determined by separate solutions method (SSM) is about
−1. However, in the multi-component solutions containing
also sodium and magnesium, besides potassium, selectiv-
ity to ammonium of the discrete sensor does not fit with
SSM results. Experimentally measured ammonium detec-
tion limit for the discrete sensor was twice higher than
lowest concentration of ammonium to be detected. More-
over, the response of this sensor to ammonium in the model
growth medium is non-linear almost in the whole range of
ammonium concentrations as shown inFig. 1. Thus, a dis-
crete standard ammonium-selective sensor cannot be used
for quantitative ammonium determination in the growth
medium.

On the other hand, the lowest concentration of ammo-
nium in the growth medium (Table 1) was comparable to
the detection limit of the sensor array. Furthermore, it is not
a problem for the sensor array if the response is non-linear.
Therefore, the electronic tongue could be reliably used for
ammonium determination under these conditions. It is im-
portant to note that utilization of array of cross-sensitive
sensors enables significant improving of selectivity and
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Fig. 1. Response of nonactine-based ammonium-selective electrode to
ammonium ions on the minimal medium background. Theoretical linear
response of the electrode is shown by the dashed line. Targeted range of
ammonium in the growth medium is delineated by the vertical lines.

Table 2
Average relative errors of prediction (%) of ammonium, oxalate and
citrate content in simulated fermentation solutions of the first and second
experimental sessions

Calibration
method

Ammonium Oxalate Citrate Experimental
sessions

PLS 12 6 11 First
10 6 10 Second

ANN 5 5 8 First
6 6 8 Second

Data were processed using PLS-regression and back-propagation ANN.
Average relative error of prediction was calculated according to the for-
mula: AVR = ∑

n |Creal−Cpred/Creal|/n, wheren is a number of samples
in the test set.

detection limit in comparison with discrete sensors that
is in full agreement with previously published results
[14].

The sensors of the array produced reproducible responses
despite being permanently subjected to significant interfer-
ences from various components of background solutions at
rather high concentrations. Typical sensor potential repro-
ducibility in replicated measurements was in the range of
1–4 mV depending on the sensor type.

After sensitivity study, the first experimental session with
simulated solutions containing all components except pyru-
vate, mannitol and erythritol was performed. During the
second experimental session measurements in simulated
fermentation solutions containing all substances listed in
Table 1were carried out. The average relative errors of de-
termination of ammonium, oxalate and citrate for the first
and the second experimental sessions are shown inTable 2.
Comparable results were obtained for both sessions. Thus,
no significant interference from pyruvate, mannitol and
erythritol on the sensors’ response was observed, which
is explained by low sensitivity of currently used sensing
materials of electronic tongue to polyols.

Two multivariate techniques were employed for sensor
array calibration: PLS-regression and back-propagation
ANN. No difference between the two methods for oxalate
content prediction was observed. However, ANN performed
somewhat better in predicting concentrations of ammonium
and citrate in comparison with PLS-regression (Table 2).
This may mean that the sensors’ responses to ammonium
and citrate were non-linear. Non-linearity of the data can
be evaluated using plots of hidden neurons’ activations or
outputs versus their inputs. Inputs in this case were summed
outputs of neurons of the input layer. The hyperbolic tan-
gent, which was used as a transfer function, has a strongly
non-linear part and a nearly linear part. It is possible to eval-
uate data non-linearity by studying which portion of a trans-
fer function gets activated during training of the ANN with
a particular data set[16]. Activities or outputs of two hidden
neurons of trained back-propagation ANN for determina-
tion of ammonium are shown inFig. 2. The whole range of
the transfer function, including non-linear parts, is getting
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Fig. 2. Input vs. activity (output) of two hidden neurons of
back-propagation neural network calibrated for ammonium determination.
Activation of the whole range (both linear and non-linear) of the transfer
function gives an evidence of significant non-linear dependence of sensor
responses to changing ammonium content. Similar results were obtained
for citrate.

activated in case of ammonium (and citrate), suggesting that
dependences between the sensors’ potentials and component
concentrations are strongly non-linear. Non-linearity of the
sensors’ responses can result from significant interferences
from other compounds present in the medium, particularly
at low contents of ammonium and citrate. In particular,
potassium should interfere with response to ammonium
whilst citrate and oxalate should interfere with responses
to each other. Based on these considerations the results
obtained using ANN rather than PLS are reported below.

Results of determination of ammonium, oxalate and cit-
rate content in test samples from the first experimental ses-
sions are shown inTable 3. Calibrations were made using
ANN. The test set was comprised of selected samples that
were not used in calibration. It can be concluded that the
sensor array is capable of measuring simultaneously both the
contents of ammonium and two organic acids in the fermen-
tation solutions with a good precision (the average relative
errors are shown inTable 2).

In the third experimental session, sodium azide in a con-
centration of 10 mM was added to all 22 simulated fermen-
tation solutions to see if this substance would interfere with
the sensors’ responses to ammonium and organic acids. It
was found that sodium azide did change the responses of
some sensors and, hence, can be detected and quantified it-
self, if necessary. The influence of sodium azide on the sen-
sor responses is illustrated inFig. 3where samples with and
without sodium azide form two well-separated clusters on a
PCA-score plot. However, in spite of this influence, it was
still possible to make valid calibration models for determin-
ing ammonium, oxalate and citrate without significant loss
of precision compared to azide-free solutions. Average rela-
tive errors of component’s determination in the test sets are
shown inTable 4(rows 1 and 2) for both cases.

Table 3
Results of determination of ammonium, oxalate and citrate content in the
test solutions of the first measurement session

Sample no. Added (mM) Predicted (mM) S.D.

Ammonium
2 2.0 2.1 0.4
4 2.8 2.5 0.3
6 4.8 4.9 0.1

14 6.0 6.0 0.04
16 12.0 11.8 0.3
18 13.2 13.7 0.05
19 14.0 13.6 0.02

Oxalate
6 7.8 7 1
8 13.0 14 1
9 20.7 21.0 0.3

10 28.5 28 1
16 33.7 33.8 0.6
18 44.0 43.9 0.4
20 49.2 51 2

Citrate
6 1.7 2.1 0.1
8 2.6 2.5 0.2

10 3.3 2.9 0.2
13 3.6 3.1 0.03
16 3.8 4.0 0.1
18 4.3 4.5 0.1
20 5.0 5.0 0.2

Data were processed by ANN.

Furthermore, an attempt to make a joint calibration model
using the results of measurements in all solutions, both with
and without sodium azide, was performed. The prediction
ability of the joint calibration model based on all measure-
ments (Table 4, row 3) was comparable (though slightly
worse) to that of models made separately for solutions with
and without sodium azide (Table 4, rows 1 and 2). Thus,
sodium azide presumably changes mainly the standard po-
tential of the sensors rather than their sensitivity, and the
influence of sodium azide on the sensors of the electronic
tongue can be effectively taken into account by an appro-
priate calibration model (Fig. 3). This result suggests an op-
tion for reliable analysis of real-world fermentation samples
where microbial activity was suppressed by azide after sam-
pling.

One of the parameters that can be of interest in biotech-
nological applications (e.g.[6]) is the time elapsed from
the inoculation of the growth medium, i.e. from the start

Table 4
Average relative errors of prediction (%) of ammonium, oxalate and citrate
content in model growth media with and without addition ofsodium azide

Ammonium Oxalate Citrate Samples

6 6 8 Without azide
7 7 7 With azide

11 6 12 All data

Data were processed using ANN.
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Fig. 3. Difference of sensors’ responses in the samples with and without
sodium azide. (a) Responses of the sensors of the array (numbers along
horizontal axis) in the two samples of the same composition one with
sodium azide added and another one without azide. (b) PCA score plot
of all data from the third experimental session—the results of all mea-
surements (with and without sodium azide) were considered. All samples
containing sodium azide can be clearly distinguished from all azide-free
samples.

of the process. The electronic tongue is sensitive enough to
track changes of crucial components during bacterial growth.
Thus, it is very likely that growth time can be also predicted
using the electronic tongue. First three samples were ex-
cluded from the data set since no discernible changes in the
broth composition occurred during the first 8 h after inocula-
tion. A calibration model was calculated using the rest cali-
bration samples (seeSection 2) to fit time dependence of the
electronic tongue response. The growth time was predicted
for the test samples with average relative error 2%, which
is about 17 min. This results is also in good agreement with
previous experience, described in[6] where elapsed process
time was successfully predicted by the ET for real growth
media.

4. Conclusions

An electronic tongue system comprising a sensor array
based on eight PVC-plasticized cross-sensitive potentiomet-
ric chemical sensors has been successfully applied to si-
multaneous determination of ammonium, oxalate and citrate
content in simulated fermentation media closely resembling
real-world samples typical of a process involvingA. niger.
The content of the targeted components in the media were
in the range of 0.4–14 mM for ammonium, 0.5–5.5 mM for
citrate and 2.6–62.2 mM for oxalate. The average predic-
tion errors in the given ranges did not exceed 8% when a
back-propagation artificial neural network was used for data
processing. ANN produced somewhat better results than
PLS in the data fitting, most likely due to better consider-
ation of significant non-linearity of the dependence of sen-
sor potentials on concentration, particularly for ammonium
and citrate at low levels. It was also possible to quantify
the content of all three key components in the presence of
10 mM sodium azide, which is commonly used to suppress
microbial activity after sampling. Utilization of the elec-
tronic tongue for fermentation monitoring shows promise
for industrial applications based on good precision and re-
producible behavior of the sensor system and due to the
possibility of automated measurements and data processing,
resulting in inexpensive and rapid analysis (including at-line
modalities).
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